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Results are presented for four optimization benchmark problems posed by the AIAA
Aerodynamic Design Optimization Discussion Group. The benchmarks involve drag min-
imization for airfoils and wings, subject to geometric and aerodynamic constraints. Our
design approach involves two forms of adaptation. First, the shape parameterization is
gradually and automatically enriched from a coarse initial search space. Second, adjoint
solutions are used to drive adaptive mesh refinement to control discretization error. The
highest-resolution parameterizations and the finest, most accurate flow meshes are each
used only when nearing the optimum, thus introducing greater complexity and accuracy
only when necessary to further improve the design. The first benchmark is an inviscid airfoil
design problem, where we reduce the drag by a factor of 10. This example also shows how
the combination of progressive parameterization and tiered discretization error control can
dramatically accelerate the optimization. Next, we improve the span efficiency factor of a
straight wing in inviscid flow by optimizing the twist distribution. On a viscous transonic
airfoil design problem, we use an inviscid optimization approach to substantially reduce the
total drag of the viscous solution. Finally, we perform automatic, multistage optimization
of the Common Research Model wing, managing to hold drag roughly fixed while meet-
ing a substantially more restrictive pitching moment constraint. This work demonstrates
the ability of our shape optimization system to solve representative aerodynamic design
problems, using automatic flow meshing and shape parameterization refinement.

Links: Project Slides

I. Introduction

To encourage systematic evaluation of aerodynamic optimization frameworks, a suite of benchmark opti-
mization problems is being developed by the AIAA Aerodynamic Design Optimization Discussion Group.

The purpose of these benchmarks is to exercise the capabilities of aerodynamic optimization frameworks
on challenging design problems. In this work we solve the benchmark problems using an adaptive shape
optimization approach comprised of two basic elements:

• Progressive shape parameterization: We periodically and automatically refine the search space
as the shape evolves.1

• Discretization error control: We monitor and control the aerodynamic objective and constraint
error throughout the optimization using error-driven mesh adaptation.2

Through periodic enrichment of the search space, our system is able to explore the design space more
thoroughly and more robustly than under a fixed parameterization approach. Discretization error control
helps ensure that accurate flow solutions are driving the optimization. Taken together, these two components
aim for automatic, accurate and thorough exploration of unfamiliar design spaces. Both elements increase
resolution (and thus cost) only when necessary to achieve design improvement. Throughout the work, focus
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Case I: 	 Drag minimization for symmetric

	 	 airfoil containing NACA0012 

	 	 (M0.85, inviscid)

Case II: 	Drag minimization for airfoil at fixed 

	 	 lift, pitching moment and area 

	 	 (M0.724, viscous)

Case III: 	Wing twist for minimum 
	 	 induced drag at fixed lift 

	 	 (M0.5, inviscid)

Case IV: 	Drag minimization for swept wing at 	
	 	 fixed lift, pitching moment and volume 

	 	 (M0.85, viscous)

Figure 1: Overview of the four benchmark cases, showing baseline designs with isomach contours.

is placed on automating non-design-related effort, such as meshing and shape parameterization, as much
as possible. Additionally, our approach strives to ensure that the final optimized shape depends only on
the problem specification (objective and constraints) and is robust with respect to other inputs, such as the
initial design, shape parameterization, flow mesh, etc.

Figure 1 gives the essential details of the four benchmark cases, which have also been described by previous
discussion group partipants.3–8 Mach numbers range from 0.5 to 0.85, under inviscid and viscous conditions.
For each case the aerodynamic optimization problem consists of finding a shape S that minimizes the drag
J = CD(Q(S)), which is evaluated after solving the flow equations for the flow state Q. There are also
aerodynamic and geometric design constraints of the form a ≤ Ci(S,Q(S)) ≤ b, which involve lift, pitching
moment and wing thickness or volume.

To solve the benchmarks, we use an adjoint-based design framework9 that uses an embedded-boundary
Cartesian mesh method for inviscid flow solutions.10,11 Adjoint solutions12 are used for three purposes: (1)
goal-oriented discretization error control via adaptive mesh refinement,13,14 (2) aerodynamic objective and
constraint gradient computation,15 and (3) prioritization of candidate refinements of the shape control,1 the
latter being a new use of the adjoint. Design changes are driven by the SQP optimizer SNOPT.16

Throughout this work we optimize shapes by deforming discrete surface triangulations. Shape manipula-
tion is handled with a standalone discrete geometry platform, implemented as an extension to an open-source
computer graphics suite called Blender.17 This extension allows Blender to serve as a geometry engine for
optimization. For the benchmarks we use several custom deformation techniques, which are implemented
as plugins to this platform. Shape sensitivities are computed analytically for each deformer. Geometric
functionals (e.g. thickness and volume) are computed by a standalone tool that provides analytic derivatives
to the functionals. The design framework communicates with these geometry tools via XDDM, which is an
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XML protocol for extensible design markup.9

The discussion group places special focus on the correctness and optimality of the results. The next
two sections elaborate on our two-fold approach to accurately and thoroughly explore the design space
while controlling computational costs and user time. In Sections §IV and §V we present results for the four
benchmark cases.

II. Progressive Search Space Refinement

Auto: Partition
Feature/Constraint

Parameter

Auto: Parameterize
Binary 

Refinement

User: Mark Features and Constraints

Auto: Uniform Refinement

A B C

D E F

Auto: Adaptive Refinement

Figure 2: Progressive parameterization of an airfoil with discrete,
hierarchical shape control refinement

The discrete surface being designed has po-
tentially millions of degrees of freedom (one
per vertex). To reduce the search to a manage-
able number of dimensions, the surface modi-
fications are parameterized, yielding a smaller
“search space”, which is a subspace of the full
design space. The search space is defined by a
set of design variables (henceforth “DV”) with
values X and a deformation function D(X).
The local linearization of D provides the shape
derivatives ∂S

∂X , which describe the deformation
modes of each parameter. Typically, a designer
chooses a static set of shape deformation pa-
rameters, which may be more or less effective at
improving the objective function. This search
space is only a subset of the entire design space,
and so it cannot generate all feasible shapes. In
this paper we instead use a “progressive” pa-
rameterization approach, developed in more de-
tail in a companion research paper.1 Here we
give a brief overview.

!12

Modify shape 
parameters

Analyze

Refine shape 
control

Figure 3: Optimization loop with
concurrent search space refinement.

In progressive parameterization, a sequence of search spaces is gen-
erated, with a progressively increasing number of design variablesa, as
illustrated in Figure 2. After optimizing within an initial low-dimensional
search space, the shape control is refined, opening up new avenues for
improvement, and the optimization continues in the higher-dimensional
space. The basic idea is to first optimize in low-dimensional search spaces,
allowing rapid design improvementb, and then to introduce more dimen-
sions to drive towards the optimal shape.

As shown in Figure 3, the optimization process is now decomposed into
a series of subproblems with fixed shape control, each of which is solved by
a standard aerodynamic design framework. Once the current search space
is sufficiently exploited, a search space refinement request is sent to the
geometry modeler. Conceptually, both the static shape optimization framework and the geometry modeler
can be viewed as standalone servers, although in practice there is a fair amount of interplay among them.

A. Setup

Instead of specifying a static set of design variables, the designer marks important design features. For airfoil
and wing design, these may involve fixing the leading edge, trailing edge or spar locations. Using these
features as dividers, the surface is partitioned into regions, which are automatically parameterized. When
parameterizing a curve such as an airfoil, initially a single design variable is placed at the midpoint of each
region. Finer control is then gradually introduced as necessary.

aAnother approach, which we have not yet tested, would be to redistribute existing parameters.
bBFGS methods theoretically converge in O (NDV ) search directions, meaning that having fewer degrees of freedom generally

leads to (initially) faster design improvement.
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B. Parameterization Refinement

We adopt a hierarchical search space refinement technique, with a discrete approach to adding design variables,
akin to h-refinement in mesh adaptation. This permits straightforward generation of a sequence of search
spaces with regularly-spaced shape parameters. In the limit of refinement, this sequence converges to
continuous shape control. The shape control can be encoded as a binary tree, as depicted in Figure 2. For all
of the benchmark problems, we adopt the simple and robust approach of uniform parameterization refinement
by binary subdivision of each tree, as shown in Figure 2.

Uniform refinement raises the issue of the rate of growth in the number of design variables, which has a
critical impact on efficiency. Excessively high growth rates introduce large numbers of design variables, leading
to search spaces that are slow to navigate. Although, as we will show, even uniform refinement accelerates
design improvement compared to static parameterizations, uniform distribution of shape control is generally
suboptimal, implying that even more gains in efficiency are possible. In the companion paper, we develop
an adaptive refinement approach,1 which aims to select the most effective parameterization, maximizing
design improvement for a fixed number of design variables. This often reduces the total number of design
variables required to find the optimum. Prediction of the relative effectiveness of the myriad possible shape
control refinements is based on objective and constraint gradients, extracted at low cost from the final adjoint
solution(s) in the previous search space. However, we show in that paper that this prediction is accurate
only for well-scaled problems or when an approximation to the Hessian of the candidate shape parameters
is available. For the benchmarks, we restrict ourselves to uniform refinement, briefly examining adaptive
refinement only on Case I.

C. Triggering Search Space Refinement

To determine when to transition to a finer search space, we use a “trigger”, or stopping criterion, that
terminates the optimization in the current search space and initiates a parameter refinement. A timely and
robust trigger is critical for efficiency. Over-optimization on early parameterizations leads to long periods
of negligible design improvement, as also observed by other authors.2,18 Our approach is to only partially
converge the optimization in each search space, with the goal being to move to the next parameterization
when it is most computationally efficient to do so. One obvious approach is to trigger when the objective
gradients have been sufficiently reduced,c which indicates that optimality is being approached in the current
search space. However, the threshold is problem-dependent, especially with poorly-scaled search spaces,
making it difficult to set. For relatively smooth problems, we adopt a more direct approach. We monitor the
rate of design improvement, as measured by the slope of the objective history with respect to search directions
(see, e.g. Figure 7), and trigger a parameter refinement when this slope tapers to below a certain fraction
of the maximum slope achieved under the current parameterization.d From an engineering perspective, this
makes sense. Design improvement vs. the cost to obtain that improvement is typically the figure of merit.

III. Discretization Error Control Strategy

Controlling discretization error is an essential component of our system, because it enables a trade
between cost and accuracy that can substantially accelerate the early phases of optimization. Our approach
here is somewhat atypical. As shown in Figure 4, for each design iteration, a flow mesh is automatically
generated, using output-based adaptive refinement, which seeks to reduce error in the objective and constraint
functionals.2 Thus we obtain mesh convergence information for each design. Naturally, an indiscriminate
application of tight error control would greatly increase the computational expense. However, by tracking
the output error and comparing it to the evolution of the objective function, we can selectively reduce the
solution accuracy during the early stages of optimization, when large design improvements are possible
even with coarse simulations. The accuracy can then be automatically sharpened as the design approaches
optimality. This approach also has the benefit of providing an estimate of the error on the functionals of
interest throughout design.

To estimate the discretization error in an aerodynamic functional (e.g. lift or drag), we use an adjoint-
weighted residual approach.19 An example of convergence of this error estimate with mesh refinement is shown

cThe KKT conditions are used when constraints are present.
dThis normalization by the maximum slope handles the widely differing scales that can be present in different objective

functions. For example, a drag functional is normally O
(
10−2

)
while a functional based on operating range may be O

(
105

)
.
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Figure 5: Top: Flow meshes adapted to accurately compute pressure drag at various airfoil shapes encountered
during optimization of Case I. Bottom: Mach contours. Right : Convergence of drag functional with mesh refinement
for the baseline design. Bars indicate uncertainty in drag and properly bound the actual changes in the functional
value.

e = |Jh(Qh) � JH(QH)| (1)

Once the mesh refinement process is in the asymptotic region, the estimate of the remaining error can be
expressed as

E =
1X

i=0

1

4i
=

4

3
e (2)

assuming second order convergence, or E = 2e for first order convergence.
In contrast, under a typical fixed-mesh approach, an initial mesh convergence study is performed to

determine a mesh appropriate for the baseline design, and then that same mesh is used for all designs. As the
shape deviates more and more from the baseline, the initial mesh becomes less appropriate, leading to higher
solution error as the design evolves. A convergence study on the final design does not solve the problem,
because the optimization was being driven by flow solutions with ever-worsening accuracy, casting doubt on
the optimality of the final design. In our approach, accuracy is selectively increased while approaching the
optimum. This both saves expense up-front and also gives more credibility to the final design.

Talk about approach to adaptation for multiple functionals. Talk about error-tightening approach in more
concrete terms. An advantage of non-tiered error control is the ability to stop anywhere and trust that result.

C. Curve Parameterization by Direct Manipulation

D. Wing Parameterization

!7

Baseline

Random Twist Stations

Initial generators

Target generators

22 24 26 28 30
2.4

2.6

2.8

3

3.2

3.4

3.6

Axis

F
ix

e
d

Twist

Control stations

Figure 6: Wing planform parameterization
(Blender plugin)

For the two wing design problems, we use a deformer that
interpolates both twist and airfoil section deformation in the
spanwise direction. The deformer is illustrated in Figure 6. At
each station a curve deformer (described in the previous sec-
tion) sets the airfoil shape, after which the twist is applied. The
twist is in the streamwise plane about a user-defined axis and is
linearly interpolated between successive stations. Control sta-
tions can be arbitrarily spaced along the span, but for this work
we maintain strict regularity by refining only at the midpoints
between consecutive stations.
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Figure 4: Top: Flow meshes adapted to accurately compute pressure drag of three airfoils encountered during
optimization for Case I. Bottom: Mach contours. Right : Convergence of drag functional with mesh refinement for
the baseline. Bars indicate uncertainty in drag and asymptotically bound the actual changes in the functional.

in the right frame of Figure 4. For most practical studies involving multiple design functionals, we construct
a combined mesh adaptation functional that seeks to adequately resolve all the outputs. For example, in
Case III (twist optimization) we adapt the mesh to resolve the span efficiency factor, which leads to a mesh
that is well-balanced to compute both lift and drag.

One tremendous advantage of adaptive meshing at each design iteration is that it removes the burden of
having to hand-craft flow meshes for optimization. In contrast, in the typical approach, one tries to construct
a fixed mesh that anticipates how critical flow features will move as the design progresses. As the shape
deviates more and more from the baseline, the fixed mesh often becomes less appropriate, leading to higher
solution error as the design evolves. In our approach, accuracy is selectively increased while approaching the
optimum. This reduces up-front costs (in both user and computational time) and also gives more credibility
to the optimality of the final design.

IV. Inviscid Benchmarks

The two inviscid problems (Cases I and III) are presented first. Case I involves drag minimization for
a symmetric, non-lifting airfoil. Case III is a twist optimization problem for induced drag minimization at
fixed lift. Throughout each optimization we monitor objective convergence with shape control refinement,
constraint satisfaction, and error in the outputs. A few ancillary details, such as optimizer settings, are given
in the Appendix.

A. Case I. Symmetric Transonic Airfoil Design

0 0.2 0.4 0.6 0.8 1
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Initial
Final
Control Points

Level 1
Level 2

Level 0

Figure 5: Case I: Initial parameterization with 7
design variables, generated by twice uniformly refin-
ing a 1-DV parameterization (lower half generated by
symmetry)

The first test case involves drag minimization for a sym-
metric airfoil under inviscid conditions. The starting air-
foil is a modified NACA 0012 (henceforth “N0012m”),
where the trailing edge is made sharp.e The design Mach
number is 0.85, while the angle of attack is fixed at α = 0◦.
Additionally, the final airfoil shape must contain the orig-
inal airfoil. This constraint is satisfied when y ≥ yN0012m

everywhere on the upper surface, and inversely on the
lower surface. Because the solution must be symmetric, we solve the flow only in the upper half of the domain
with a symmetry boundary condition at y = 0. The farfield boundaries are placed 96 chords away in each
coordinate direction.

eVia modification of the x4 coefficient: y = ±0.6
(
0.2969

√
x− 0.1260x− 0.3516x2 + 0.2843x3 − 0.1036x4

)
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1. Shape Parameterization

To deform the airfoil we use a “direct manipulation” approach, where we explicitly specify the deformation
of certain “pilot points” along the airfoil, as shown in Figure 5. These points serve as the design variables,
while deformation of the remainder of the curve is smoothly interpolated using radial basis functions.20–23

Each airfoil parameter has a bump-shaped deformation mode that is mostly confined to the region between
its neighboring points, while maintaining smoothness. We choose the basis function φ = r3 here, primarily
because it requires no local tuning parameters, making it more amenable to automation.

For this problem, initially a single pilot point is placed on the top surface, as shown in Figure 5 (black
dot). Practically speaking, we observe that it is more efficient to start with several design variables, rather
than a truly minimal set, so we immediately perform two uniform refinements, giving seven initial design
variables. The shape control is clustered towards the leading edge by transforming the arc-length parametric
space.f During shape control refinement, new pilot points are placed at the midpoints between existing ones.
The midpoint is also measured in the transformed space, so in physical space, new parameters are biased
towards the leading edge.

To handle the containment constraint, we set the lower bound of each shape parameter to the corresponding
local thickness of the N0012m. The direct manipulation approach guarantees that the airfoil will exactly
interpolate these pilot points. Regions between the shape control parameters may temporarily violate the
containment constraint, but these violations get squeezed out as more parameters are added. In keeping with
our adaptive approach, the containment constraint becomes more precise as the search space is refined.

2. Optimization Results
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Figure 6: Case I: Final airfoil shape and pressure profile. Black dots
indicate the final locations of the 31 shape control parameters.

Figure 6 shows the final optimized air-
foil and its pressure profile. Two features
are most noticeable. First, the leading
edge has become extremely blunt. In fact,
after every refinement, the nose became
blunter, limited only by the first shape pa-
rameter’s proximity to the leading edge.
This is the expected optimal result for
this problem, though naturally this shape
would have poor off-design performance
and poor viscous performance. By the fi-
nal design, the containment constraint is
satisfied everywhere (not just at the inter-
polation points).

Figure 7 shows the convergence of the
objective function over 60 search direc-
tions, and over 3 parameterization levels.
The parameterization was automatically
refined (i.e. with no user intervention)
when the objective slope tapered to 20%
of its maximum slope. After each tran-
sition, a new optimization is started; no
transfer of Hessian information from the
previous design space is attempted. The
final parameterization has 31 design variables. The drag was reduced by a factor of 10, from the baseline
471 counts down to 41.3 counts. An additional refinement to 63-DVs proved unable to further improve the
design. The final design is probably close to optimal, as demonstrated by the diminishing return on each
additional parameter refinement visible in Figure 7. Some further improvement is likely possible, but even
the small amount of remaining discretization error combined with the very high-dimensional design space
makes further improvement extremely difficult.

fTransformation function is s∗ = s− 0.15sin(2πs)
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Table 1: Case I drag reduction with optimization. All drag measured in counts (CD · 104)

Baseline 7-DV 15-DV 31-DV

CD 471.3 273.8 133.0 41.3

Error estimate ±0.1 ±0.1 ±0.1 ±0.35
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Figure 7: Case I: Objective convergence

Figure 8 compares the initial and final
meshes, which were automatically adapted to
reduce error in drag. Intermediate designs gen-
erated radically different mesh refinement pat-
terns (see Figure 4 for the final design of the
7-DV parameterization level). The refinement
patterns reflect movement of the shock and
changes in the width of the supersonic region.
For the final design, the adjoint-based mesh
adaptation process provided an estimate of the
remaining error in drag of about 0.3 counts
(< 3 · 10−5 in CD). The output-based mesh
adaptation performed a mesh refinement study
at each design iteration, yielding convergence
similar to that shown in the right frame of Fig-
ure 4. This level of error was roughly constant
throughout the optimization (see Table 1), giv-
ing high credibility to the final design. The
cell count required to meet the error tolerance
gradually increased throughout optimization.
This indicates that the optimization drove the
design to become more sensitive to the mesh
discretization, as the shock weakened and nu-
merical dissipation became more noticeable.

3. Sensitivity to Farfield

The optimization process radically increased
the sensitivity of the flow to the farfield bound-
ary distance. The initial N0012m, with its rel-
atively confined regions of supersonic flow, is quite lenient with respect to the farfield boundary location.g

An initial domain size study indicated that a farfield distance of 24 chords was sufficient to resolve drag to
within 2 counts of the value obtained using 96-chord distances. However, the final design’s carefully tuned
shock structure (see Figure 6) could not be reliably resolved with farfields nearer than about 96 chords. We
observed that near the final design, an inadequate farfield distance or mesh resolution can lead to an alternate
solution with stronger shocks that roughly double the amount of drag! In our approach, we adapt the mesh
to suit each design iteration, but always within a fixed domain size. To combat this changing sensitivity, a
more comprehensive approach might periodically re-evaluate the sensitivity to farfield boundary distance,
expanding the domain as necessary.

B. Assessment of the Approach

Before proceeding to the remaining benchmarks, it is worth pausing to evaluate the computational performance
of each aspect of our approach. A progressive, automated approach has clear advantages in terms of user
time and thoroughness. However, a naive implementation can also be computationally costly. In the next two
sections we briefly discuss how to accelerate optimization using each adaptive component of our approach.

gThe farfield boundary state is enforced weakly via 1-D Riemann invariants without using circulation correction.
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Baseline Final

Mach

0.85 1 1.15

Figure 8: Case I: Comparison of baseline and final meshes. The mesh refines the regions most important for
computing drag, primarily focusing on the leading edge expansion and shock. To achieve the same error tolerance for
both designs, the baseline mesh required only 26K cells (upper half only), while the final design required 61K cells.

1. Adaptive vs. Fixed Search Spaces
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Figure 9: Case I: Cost-effectiveness of different parameter-
ization schemes, showing design improvement vs. wall-clock
time. ×-marks indicate search space refinements on the
progressive and adaptive methods. All cases used identical
error control settings.

Our progressive parameterization approach strongly
outperforms any fixed search space on Case I. To
give a rough sense of performance, Figure 9 plots
design improvement versus wall-clock time for solv-
ing Case I with various parameterizations on four
cores of a laptoph. The uniform refinement scheme
(labeled “progressive”) and the adaptive approach
(which resulted in fewer design variables) both
achieved faster and deeper overall design improve-
ment than any coarse or fine fixed parameterization.
As expected, low-dimensional search spaces support
limited design improvement, while high-dimensional
spaces take much longer to navigate. On the finest
(63-DV) fixed parameterization, which stalled quite
early, the optimizer may simply be unable to navi-
gate the design space, as also reported by Carrier et
al. on this problem.4 Starting in a coarse design space
appears to smooth the navigation early on, leading
to a more robust search process, an observation we
also expand upon in the companion paper.1

On this problem, the adaptive approach (which
results in fewer design variables) is slightly faster
than the progressive approach for most of the opti-
mization. This speedup is largely due to the smaller
number of shape derivative calls to the geometry
modeler and gradient projections, and perhaps partly
due to the lower dimensional design space. For slow
geometry modelers, this advantage could be even

h2013 MacBook Pro with a 2.6GHz Intel Core i7 and 16GB of memory.
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×-marks denote search space refinements.

10�6

10�5

10�4

Functional Error

Tolerance

0.0

50.0 k

100.0 k

# Cells

0 10 20 30 40 50 60 70 80 90
Design Iteration

0

5

10

15

20

Mesh Refinement Depth

10�6

10�5

10�4

10�3

10�2

Functional Error

Tolerance

0.0

10.0 k

20.0 k

30.0 k

# Cells

0 20 40 60 80 100 120 140
Design Iteration

0

5

10

15

20

Mesh Refinement Depth

Design Iteration

Design Iteration

(b) Constant error tolerance and actual error
estimate history

10�6

10�5

10�4

Functional Error

Tolerance

0.0

50.0 k

100.0 k

# Cells

0 10 20 30 40 50 60 70 80 90
Design Iteration

0

5

10

15

20

Mesh Refinement Depth

10�6

10�5

10�4

10�3

10�2

Functional Error

Tolerance

0.0

10.0 k

20.0 k

30.0 k

# Cells

0 20 40 60 80 100 120 140
Design Iteration

0

5

10

15

20

Mesh Refinement Depth

Design Iteration

Design Iteration

(c) Progressive error control and actual error
estimate history
10�6

10�5

10�4

10�3

10�2

Functional Error

Tolerance

Functional Error

Tolerance

0.0

50.0 k

100.0 k

# Cells

# Cells

0 20 40 60 80 100 120 140 160
Design Iteration

0

5

10

15

20

Mesh Refinement Depth

Mesh Refinement Depth

# 
C

el
ls

Design Iteration

Constant tolerance

Progressive control

(d) Cell count history

Figure 10: Case I: Comparison of fixed error control vs. progressive error control. Both cases were performed with
identical parameterization strategies and on identical hardware (2013 MacBook Pro with a 2.6GHz Intel Core i7 and
16GB of memory).

more significant. However, factors such as the trigger, rate of variable introduction, indicator, scaling, and
path-dependence make it difficult to draw firm conclusions about the potential computational advantage of
adaptive refinement vs. uniform refinement from such a cursory study.

2. Error Control Strategy

To solve Case I, we used a constant error target throughout the optimization to satisfy the benchmark
discussion group requirements of having an accurate flow solutions throughout design. Now, however, we
show that the bulk of the design improvement can be obtained using quite coarse meshes, with substantial
error control only being applied near the end to resolve the design landscape near the optimum. The adjoint-
based mesh refinement technique used here provides a mesh refinement study and discretization error estimate
along with every functional evaluation. While using tight error control throughout the optimization can lend
credence to the process, blind application can result in unnecessary expense. Consulting Figure 10a, it is
evident that a progressive error-targeting scheme has a significant cost advantage over the fixed-tolerance
approach that we used for the Case I benchmark. Early in design, large improvements can be guided even
with fairly coarse meshes. By adopting very loose tolerances early on (Figure 10c), the early stages of
optimization are greatly accelerated, without sacrificing accuracy near the optimum.

Our automatic adaptive meshing approach is especially advantageous for problems like Case I, which
exhibit substantial, unpredictable differences between the initial and final designs. However, near the optimum
successive design iterations are often quite similar. Warm-starting the meshing and flow solutions for nearby
designs is an obvious avenue for further acceleration.
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C. Case III. Subsonic Wing Twist Optimization

We defer Case II momentarily to first consider the other inviscid problem, Case III. This is a wing twist
optimization problem, where the airfoil section and planform remain unmodified. The objective is to minimize
(induced) drag at fixed lift (CL = 0.375) at a flight Mach number of 0.5.

1. Shape Parameterization

The baseline geometry is a straight, unswept, untwisted wing, generated by extruding the N0012m section
three chord lengths and capping the tip by a simple revolution. For this problem we use a deformer that
interpolates twist between arbitrary spanwise stations. The twist is in the streamwise plane about the
trailing edge and is linearly interpolated between successive stations. Control stations can be arbitrarily
spaced along the span, but for this problem we maintain strict regularity by refining only at the midpoints
between consecutive stations. We allow the global angle of attack to vary and therefore hold the twist fixed
at the wing root. The first parameterization (“P0”) has two twist stations, located at the tip and mid-span.
To generate the second level (“P1”), new twist stations are added at the midpoints between existing ones.

2. Mesh and Error Control

The baseline design has about 76.7 counts of drag. Unlike Case I, where the objective was reduced by a
factor of ten, here the possible improvements are very small, which places high demands on the accuracy of
the flow solution.24 Assuming the span efficiency factor e cannot exceed 1.0, as non-planar deformations are
minimal with the twist applied about the trailing edge, the minimum possible drag is roughly

CDmin
=

C2
L

πe0ÆR
=

0.3752

6.0π
= 74.6 counts (1)

However, as the wing is untapered, and twist is about the trailing edge, we do not expect that the optimal
design will recover a precisely elliptical lift distribution. Additionally, we observed a very small shock on
the wing tip near the trailing edge, where the flow accelerates around the tip to the top surface, which may
further erode the possible drag reduction.

We compute adjoint solutions for the drag and lift functionals to compute their gradients, allowing the
nonlinear lift constraint to be treated exactly by SNOPT. The error control scheduling was set to coincide
with the parameterization refinements, and the farfield boundaries were placed at 48 chords away. In the
first search space, the resulting adapted meshes contained about 5 million cells, while for the second search
space, the meshes contained roughly 10-15 million cells to meet the tighter error tolerance.
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Figure 11: Case III: Twist optimization results. Left : Sectional lift distribution profiles. Top right : Deviation from
elliptic distribution. Bottom right : Twist distribution
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Table 2: Case III results.

Chords from Root 0.0 0.6 1.2 1.8 2.4 2.7 2.85 2.97 3.0

Twist (o) 4.2 4.8 4.5 4.1 3.5 3.2 3.0 2.9 2.9

Sectional Lift (2cl/b) 0.156 0.156 0.146 0.126 0.094 0.069 0.050 0.030 0.0

3. Optimization Results
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Figure 12: Case III: Top: Convergence of drag. Middle: Convergence
of lift. Bottom: Cell count history

Figure 11 shows the main results of the op-
timization. The lift distribution rapidly
approaches an elliptical shape, with only
very small discrepancies at the tip, due
to the untapered section, and at the root,
which compensates to exactly match lift.
Figure 12 shows the convergence of the lift
and drag functionals. Because a coarser
mesh was used in the initial design space,
there is a jump in functional values when
transitioning to the finer design space. By
the end, lift is satisfied and drag is re-
duced. To accurately determine the to-
tal improvement, we performed an addi-
tional accurate analysis on the initial and
final designs. Figure 13 shows the con-
vergence of span efficiency factor (e) with
mesh refinement for the initial and final
designs, trimmed to CL = 0.3750. The
initial design had CD = 76.7 counts of
drag (e = 0.973 ± 0.005). By the final
design this was improved to CD = 75.6
counts (e = 0.987± 0.003).
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Figure 13: Case III: Convergence of span efficiency factor with mesh refinement
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V. Viscous Benchmarks

We now turn to the two RANS optimization benchmarks. As our design framework uses an inviscid
solver, the results will not be directly comparable to other viscous results. For Case II, we modify the design
problem slightly to achieve better viscous performance with an inviscid optimization approach. The results
for Case II are verified under viscous conditions using a recently developed 2D Cartesian RANS approach by
Berger and Aftosmis.25

A. Case II. Transonic Airfoil Design
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Figure 14: Case II: Initial 6-DV parameterization
and uniform refinement.

Case II revisits transonic airfoil design (Mach 0.734), but
this time with more realistic design constraints. The ob-
jective is again to reduce the drag, while constraints are
imposed on lift, pitching moment (which is initially vio-
lated) and the area A:

CL = 0.824

CM ≥ −0.092

A ≥ ARAE ≈ 0.07787c2

The baseline shape is the RAE 2822 airfoil. We parameterize the deformation with the same curve deformer
as in Case I. In addition to angle of attack, there are initially six shape parameters, as shown in Figure 14
(blue and red dots). A second 14-DV design space is generated by uniform refinement (green dots in Figure
14). For discretization error control, we set a lower tolerance in the first search space, and then tighten it to
±0.5 counts of drag on the second level. We compute adjoint solutions for the drag, lift and pitching moment
functionals to compute their gradients. The area is computed on the discrete surface, and the constraint
gradients are differentiated analytically.
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Figure 15: Case II: Trial 1 (inviscid) results across two parameterization levels
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1. Optimization Trial 1 (Straightforward Inviscid Design)

Figure 15 shows the results of driving the optimization with inviscid flow solutions at the specified flight
conditions. SNOPT rapidly drove down the drag. After several search directions without noticeably improving
the aerodynamic constraints, it increased its internal constraint weights, rapidly driving the pitching moment
and lift to be satisfied. The shock is nearly eliminated even under the first parameterization. After refining to
14-DVs (and simultaneously tightening the discretization error tolerance), the shock is completely eliminated.
An additional refinement to 30-DV’s did not yield any further improvent for reducing the negligible remaining
inviscid drag.

2. Viscous Analysis

Figure 16: Case II, Trial 1: RANS analysis of the straight-
forward inviscid design, showing pressure contours and col-
ored by Mach number. (CL = 0.824, M0.734, Re = 6.5
million)

To check the viscous performance of this design, we
computed the flow using the Cartesian RANS solver
mentioned above,25 with a Spalart-Allmaras turbu-
lence model at Rec = 6.5 million. The RANS solu-
tion is shown in Figure 16. The inviscidly-designed
airfoil does have superior viscous performance to the
original RAE 2822. Consulting Table 3, the total
drag has been reduced by 34 counts. However, the
presence of the boundary layer increased the angle
of attack necessary to achieve CL = 0.824, resulting
in higher Mach numbers over the top surface and
thus the presence of a moderately strong shock.

3. Optimization Trial 2 (Trailing Edge Deflection)

At these flight conditions under the assumption of
inviscid flow, a wide range of shapes eliminate the
shock while satisfying the constraints. However,
most of these designs have poor viscous performance.
To encourage the optimizer to prefer shapes with bet-
ter viscous performance, we follow the approach used
by Smith et al.26 and earlier by Campbell.27 Briefly, we mimic the shallower effective trailing edge slope
present in the true viscous flow, by applying a small upward cubic deflection to the last 20% of the airfoil at
every design iteration during inviscid design:

y = y +

(
x− 0.8

0.2

)3

sin(θ) (2)

where we used θ = 0.3◦. This forces the optimizer and inviscid solver to compensate for a shallower effective
trailing edge camber line. Naturally, the fictitious deflection is then removed when analyzing the final design
under viscous conditions. To help exclude irrelevant designs with poor viscous performance, we also roughly
constrained the thickness at three locations by removing three thickness design variables from the initial
search space.

Table 3: Case II drag reduction with optimization.

Baseline Trial 1 Trial 2

Inviscid

CD 0.0068 0.0007 0.0007

Error ±0.0001 ±0.00005 ±0.00006

Cells 21K 12K 27 K

αtrim 1.73◦ 2.28◦ 2.72◦

Viscous
CD 0.0196 0.0162 0.0124

αtrim 2.76◦ 3.60◦ 2.61◦

Figure 17 shows the results of this second op-
timization. Although the new inviscid design (top
left frame) is not fully shock-free, the viscous perfor-
mance (other frames) is substantially better, leading
to about 124 counts of drag, or an additional 38-
count reduction beyond the straightforward inviscid
design in Trial 1. As show in Table 3, this new de-
sign has a much closer match between the trimmed α
for the inviscid analysis and for the viscous analysis,
leading to similar behavior over the front region, and
importantly, similar shock placement.
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Figure 17: Case II, Trial 2 : Results for inviscid optimization using ficitious trailing edge deflection
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B. Case IV. Transonic Wing Design
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Figure 18: Case IV: First two shape control levels (8-DV and
26-DV)

The final case is a wing design optimization
problem at Mach 0.85. The objective is to
reduce drag, subject to a lift constraint and
a pitching moment constrainti, which is ini-
tially violated. The baseline geometry is the
Common Research Model (CRM) wing, scaled
so that the mean aerodynamic chord has unit
length. The planform is fixed, while variation
in the vertical direction is permitted, including
airfoil design and sectional twist. The twist is
about the trailing edge and is fixed at the root,
while the angle of attack is permitted to vary.
The wing is required to maintain its initial vol-
ume V0 and also to maintain at least 25% of its
original local thickness t0 everywhere. To ap-
proximate this continuous thickness constraint,
we used a 10×10 grid of constraints distributed
evenly across the planform. The full optimiza-
tion problem is

minCD

CL = 0.5

CM ≥ −0.17

V ≥ V0 ≈ 0.26291

ti ≥ 0.25ti0∀i

We solve this problem unmodified at invis-
cid conditions to demonstrate our design ap-
proach. The purpose of this example is not
to directly compare the quantitative results to
those achieved by groups using viscous design
approaches, but rather to demonstrate our au-
tomated design system on a representative 3D
problem.

1. Shape Parameterization
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Figure 19: Case IV: Convergence of aerodynamic functionals
(only plotted at successful search directions).

For this problem, we use a deformer similar
to that used in Case III, but here it interpo-
lates both twist and airfoil section deforma-
tion independently. At each station a curve
deformer (identical to the setup used for Cases
I and II) deforms the airfoil shape, after which
the twist is applied. As before, the twist is in
the streamwise plane about the trailing edge
and is linearly interpolated. Control over air-
foil sections and twist can happen at different
stations, allowing for “anisotropic” shape con-
trol. For example, the twist control may have
a higher spanwise resolution than the airfoil
control. Similarly, each airfoil control station
can offer different shape control resolution.

iMeasured about the point (1.2077, 0, 0.007669) with the origin at the leading edge of the wing root.
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Figure 20: Case IV: Airfoil cuts and inviscid solution pressure profiles.

Figure 18 shows the first two parameterizations (“P0” and “P1”). P0 allows twist at the tip and break
(fixed at the root) and rough camber and thickness control (two control points each on the root, break
and tip sections). There are initially eight shape design variables, plus the angle of attack. To refine the
parameterization, we add new control stations at the spanwise midpoints between the existing stations, and
simultaneously uniformly refine the airfoil control at each existing station. Two additional parameterization
levels (“P1” and “P2”) are automatically generated when needed, with 26 and 70 geometric design variables,
respectively.

2. Optimization Results

Figure 19 shows the convergence of the aerodynamic functionals over the three parameterization levels. Under
“P0”, the initially violated pitching constraint is driven to satisfaction. To do this, large airfoil deformations
are enacted, as shown in Figure 20 (blue lines), with a resulting sharp increase in drag. After adding more
shape control resolution, the drag is rapidly driven down almost to the initial value, while nearly satisfying
the constraints. The airfoil sections (Figure 20, orange lines) relax to more subtle changes from the baseline
shape. The thickness and volume constraints are met at every design iteration. All of the constraints are
nearly satisfied by the end, with only a slight drag penalty associated with having to meet the initially
violated pitching moment constraint.

The flow mesh was automatically adapted for every design iteration, with about 12-18 million cells,
depending on the design iteration, which was adequate to drive the optimization forward. We did not yet
analyze the performance of the inviscidly optimized wing with a viscous flow solver, and it is possible that
a modification of the trailing edge (as in Case II) would improve the viscous performance. Nevertheless,
this example demonstrates the ability of our adaptive shape optimization system to automatically solve a

16 of 18

American Institute of Aeronautics and Astronautics



standard 3D aerodynamic optimization problem with constraints. After the initial problem setup, no user
intervention or problem modification was required for the remainder of the optimization.

The design improved substantially at each parameterization level, including in the finest 71-DV search
space. This suggests that, although the optimization may have converged with respect to the existing shape
parameters, it has not yet converged with respect to the refinement of the shape control resolution. By
monitoring the amount of design improvement achieved under successive search spaces, our system is able
to inform a designer about convergence towards continuous optimality, information that is not typically
available under a static-parameterization approach.

VI. Summary

We presented results for four optimization benchmark problems. On the two inviscid design problems,
expected results were recovered. For Case I, our final shape is nearly identical to shapes seen by previous
participants,3–7 with similar or superior drag performance (reduction of 10× from the baseline). For Case III,
although the baseline shape left little room for improvement, our system optimized the wing twist, managing
to drive the lift distribution closer to elliptic and reducing the drag by one count. On Case II, we showed how
an inviscid design approach with slight problem modifications was able to reduce the RANS-analyzed drag
by 72 counts. On Case IV, we showed how our progressive parameterization and discretization error control
systems work together to automatically solve a typical 3D design problem, holding drag roughly constant
while meeting an initially violated pitching moment constraint.

Our approach combines progressively refined shape spaces with progressive discretization error control.
We showed how progressive parameterizations susbtantially reduced the optimization cost compared to using
fine fixed parameterizations. By using a tiered approach to discretization error control, we achieved rapid early
design progress on coarser meshes, while automatically transitioning to higher resolution when approaching
the optimum. In the future we hope to demonstrate this system on larger scale problems, such as low-boom
design or wing-body-nacelle integration.
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Appendix A. Optimization Details

Table 4 shows some of the optimizer and flow settings used for each case.

Table 4: Optimization and Flow Solver Parameters

Case 1 Case 2 Case 3 Case 4

Farfield distance (x,y,z) (±96, ∅,+96) (±96, ∅,±96) (±48,+48,±48) (±113,+113,±113)

Limiter None None van Leer van Leer

Trigger Slope < 0.2 Optimality Optimality Optimality

SNOPT Major Step Limit 1.0 1.0 1.0 1.0
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